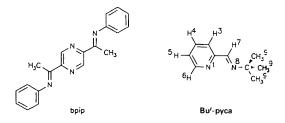
Conformational equilibria of 2,5-bis(1-phenyliminoethyl)pyrazine anion radical, bpip⁻. An electron paramagnetic resonance/electron– nuclear double resonance study of bpip⁻, (bpip⁻)(RMg⁺)₂, and of the related anion radical of *N-tert*-butylpyridine-2-carbaldimine (Bu^t-pyca)

Thomas Stahl, Volker Kasack and Wolfgang Kaim*


Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany

EPR and ENDOR spectra were obtained for the anion radical forms of Bu'-pyca (*N*-tert-butylpyridine-2carbaldimine) and of the new symmetrical bis-chelate ligand bpip [2,5-bis(1-phenyliminoethyl)pyrazine]. The spin distribution of both species reflects the mixed imine/azine composition of the ' α -diimine' chelate moieties. In the absence of coordinating electrophiles, bpip⁻ displays ENDOR-detectable conformational equilibria, presumably between s-cis/s-cis, s-cis/s-trans and s-trans/s-trans isomers. Bpip reacts with MgR₂, R = 2-tolyl, in an electron-transfer fashion to form an organomagnesium radical complex.

Introduction

Among the most prominent members of the α -diimine ligand family for chelate coordination of metal centres are aromatic 2,2-bipyridine (bpy)^{1.2} and non-aromatic 1,4-diorganosubstituted 1,4-diazabutadienes (R-dab).²⁻⁴ As mixed aromatic/nonaromatic 'hybrid' forms, various pyridine-2-carbaldimines (Rpyca) have also been used for some time in stereochemical, photochemical or other studies.³⁻⁷ Owing to their low symmetry, there have not yet been any satisfactory EPR investigations of R-pyca anion radicals although the ligands and their complexes have low lying π^* orbitals.^{3,4,6}

In this work we describe electron paramagnetic resonance/electron-nuclear double resonance (EPR/ENDOR) studies and the electron-transfer reactivity of a new 'doubled' pyca-type ligand, 2,5-bis(1-phenyliminoethyl)pyrazine (bpip),⁸ which is able to bind two equivalent metal centres in a mixed azine/imine chelate fashion.^{8,9} There is a continuing interest in new symmetrically bridging ligands^{10,11} in the field of metalmetal interactions and 'metallosupramolecular' chemistry;12,13 bis(pyridine-2-carbaldimine) ligands related to bpip are known.^{14,15} In comparison with these previously synthesized ligands,^{14,15} bpip contains a smaller π -system, which increases the extent of potential metal-metal interaction in dinuclear complexes.¹⁰ We also report an EPR spectrum of bpip⁻⁻ in a metal-coordinated form after the electron-transfer reaction 16,17 of bpip with Mg(2-tolyl)₂, and a first EPR/ENDOR study of a pyridine-2-carbaldimine anion radical, i.e. of the tert-butyl derivative Bu'-pyca

Results and discussion

2,5-Bis(1-phenyliminoethyl)pyrazine anion radical

Bpip, prepared from the reaction of 2,5-diacetylpyrazine¹⁸ and aniline, can be reduced to an anion radical at -1.42 V vs.

standard calomel electrode (SCE) in acetonitrile or tetrahydrofuran (THF)/0.1 mol dm⁻³ Bu₄NClO₄. The green solution displays an EPR spectrum (Fig. 1) which can be simulated assuming a small pyrazine proton coupling a(NCH), a larger methyl proton hyperfine splitting, and ¹⁴N hyperfine coupling from both the pyrazine and imine nitrogen centres; within the EPR linewidth, both $a(^{14}N)$ -values are equivalent (Table 1). This assignment is supported by the results from a Hückel MO calculation of π spin populations¹⁹ which are depicted in Fig. 2 (perturbation parameter¹⁹ $h_N = 0.8$ for all four nitrogen centres, methyl and N-phenyl substituents not included).

Fig. 1 shows, however, that the experimental spectrum is not perfectly reproduced by the computer simulation. While the typical ^{19,20} anisotropic EPR line-broadening of large radical ions with ¹⁴N hyperfine splitting precluded a more detailed investigation at lower temperatures, the low radical concentrations necessary for high-resolution studies led to low signal-tonoise ratios (Fig. 1). For further analysis, we therefore resorted ¹H-ENDOR spectroscopy which produced distinctly to temperature-dependent spectra (Fig. 3, Table 1). Although ¹⁴N-ENDOR signals of pyrazine radical ions with a_N -values of ~0.8 mT are usually well detectable, particularly at temperatures around 275 K,²¹ the much smaller ¹⁴N hyperfine coupling of ~ 0.16 mT for bpip anion radical results in poorly defined features in the low-frequency region (<3 MHz) where possible artifact signals and baseline problems did not allow us to assign signals with the necessary confidence.

At 243 K and below, there are two pairs of ¹H-ENDOR signals visible for the two kinds of protons mentioned above; the hyperfine coupling constants are consistent with the assignment made in Table 1. No phenyl proton coupling is observed, which suggests a close-to-perpendicular arrangement between the phenyl rings and the heterocyclic imine functions; on the other hand, the large ¹⁴N and CH₃ coupling constants are in agreement with a close-to-planar π -system involving the 10 π centres depicted in Fig. 2.

Additional lines appear at higher temperatures (Fig. 3), which are attributed to an interconversion of s-cis/s-cis, s-cis/strans and s-trans/s-trans rotamers I, II and III (Scheme 1) and which are a consequence of the partially restricted rotation around the pyrazine/imine bonds.

In fact, at least three different pairs of small (pyrazine CH) and large 1 H coupling constants (methyl) can be identified (Fig. 3, Table 1); hence the unsatisfactory computer

Table 1	EPR/ENDOR	dafa" of bpip"-	and its bis(2-tolylmagnesium) complex

	a(mT)				
Radical	¹ H(CH ₃)	¹ H(NCH)	¹⁴ N	g	
 bpip ^{•-} (EPR, 293 K) ^b	0.186°	0.018 ^c	0.159 ^{c.d}	2.0033	
bpip ^{•-} (ENDOR, 243 K) ^b	0.193	0.020	n.d.	2.0055	
(ENDOR, 273 K) ^b	0.193°	0.020°	n.d.		
(,,,,	0.233 ^e	0.069 ^e			
		0.049 ^e			
(ENDOR, 283 K) ^b	0.198 ^e	0.020 ^e	n.d.		
	0.184 ^e				
	0.233 ^e	0.069 ^e			
	0.141 °	0.049°			
$(bpip^{-})(RMg^{+})_{2}^{f}$	0.12	< 0.08	0.24 ^d	2.0035	

^a Measurements in THF solution, no phenyl proton hyperfine coupling observed. ^b From electrolysis in THF/0.1 mol dm⁻³ Bu₄NClO₄. ^c Main component. ^d Equivalent hyperfine splitting of pyrazine and imine nitrogen centres. ^e Minor component, for assignments see text. ^f From electron-transfer reaction between bpip and R_2Mg (R = 2-tolyl) in THF.

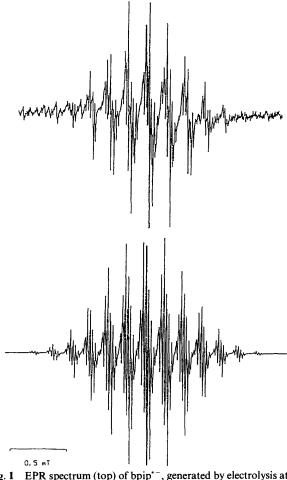


Fig. 1 EPR spectrum (top) of bpip^{•-}, generated by electrolysis at a Pt cathode in THF/0.1 mol dm⁻³ Bu_4NCIO_4 at 293 K, and simulation with the coupling constants of Table 1 (0.065 mT linewidth)

Fig. 2 Hückel MO representation of the singly occupied π MO of bpip anion radical ($h_N = 0.8$ for all nitrogen centres; methyl and phenyl substituents not included)

simulation of the EPR spectrum which accounts only for the main species.

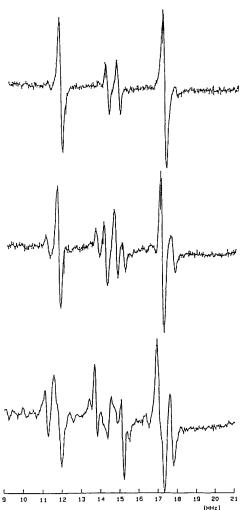
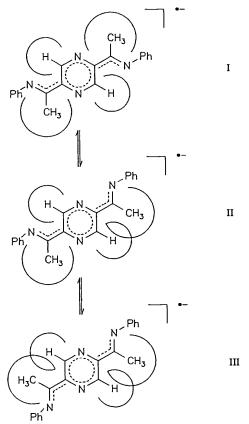



Fig. 3 ENDOR spectrum of electrolytically generated bpip^{•-} at 243 K (top), 273 K (middle) and 283 K (lower spectrum). 20 mW microwave power, 316 W rf power, 12.5 kHz modulation frequency.

On reduction, the single bonds between the aromatic heterocycle and the imine double bonds acquire some partial double-bond character with increased barrier to rotation.^{19,22} At low temperatures, there is only one rotamer observable by ENDOR spectroscopy (0.193 and 0.020 mT hyperfine splitting) which we tentatively identify as species I because of the least interference between (pyrazine-C)H and (imino)CH₃ groups (Scheme 1). At temperatures above 243 K, the fraction of high-energy rotamers II and eventually III should increase, the exact assignment of hyperfine coupling being somewhat uncertain

Scheme 1 Rotamers of bpip anion radical with coplanar 10-centre π -systems

due to the low symmetry of the presumed intermediate rotamer II. Tentatively, we assign the ¹H coupling constants of 0.233, ≈ 0.193 , 0.069 and 0.020 mT to rotamer II and values of 0.141 and 0.049 mT to rotamer III. The larger (pyrazine-C)H coupling constants in comparison with that of conformer I can be attributed to interference with the methyl group as illustrated in Scheme 1.

In order to provide additional evidence for this assignment we obtained a dinuclear bis(chelate) complex of bpip⁻ which then has to exist in the sterically less favourable conformation III. The driving force for this high-energy arrangement is provided by formation of the coordinative bonds. The bis(chelate) complex chosen was obtained via a single-electrontransfer reaction with bis(2-tolyl)magnesium. It is well known that π -electron-accepting α -diimine ligands such as bpy, 1,10phenanthroline¹⁶ or R-dab^{16,17} react with diorgano-magnesium or -zinc compounds to form radical complexes under loss of one alkyl radical (chelate-assisted inner-sphere electron transfer) [eqn. (1)].^{16,17} For the dinuclear bpip system we

bpip +
$$3R_2Mg \longrightarrow$$

(bpip⁻)(⁺MgR)₂ + R_3Mg^- + R[•] (1)

assume two-fold organomagnesium coordination with only one electron-transfer step; triorganomagnesiate anions are known species.²³

Unfortunately, the bis(organomagnesium) complex could not be studied by ENDOR due to difficulties in saturating EPR signals; the less well resolved EPR spectrum (Fig. 4) may be simulated by assuming the typically 16,17,24 increased 14 N hyperfine splitting and a methyl proton coupling of 0.12 mT (Table 1) which would support our assignments for the conformer III.

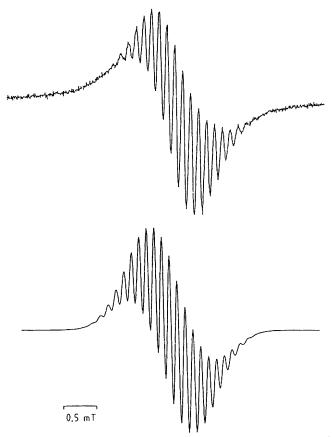


Fig. 4 EPR spectrum (top) of the paramagnetic reaction product of bpip with $Mg(2-tolyl)_2$ in 1,2-dichloroethane at 293 K; lower spectrum: computer simulation with the data from Table 1 and 0.098 mT linewidth

N-tert-Butylpyridine-2-carbaldimine anion radical

Although Bu⁷-pyca, like Bu⁴-dab,¹⁷ is reduced only irreversibly at ~ -1.9 V vs. $Fc^{+/o}$ in cyclic voltammetry (MeCN/0.1 mol dm⁻³ Bu₄NClO₄; 295 K), it could be converted into a relatively persistent anion radical with potassium in THF at 200 K. The achievable concentration at high-resolution conditions was fairly low; nevertheless, we could obtain EPR and ENDOR spectra. Although we have no direct evidence from EPR or ENDOR spectroscopy, we assume the formation of an ion pair between K⁺ and Bu^r-pyca⁻⁻ in its chelating conformation;³ without such co-ordination the pyca systems probably prefer the *trans* conformation with respect to the imine moieties.

Owing to the large number of coupling parameters $(2 \times {}^{14}N, 6 \times {}^{14}H$ coupling constants, Table 2), we had to resort to ENDOR spectroscopy in order to obtain at least the $a({}^{1}H)$ -values. Fig. 5 shows that there are indeed six such signal pairs, of which we attribute the smallest value to the *tert*-butyl protons and the largest ${}^{1}H$ coupling to the proton at the imine group. The remaining four $a({}^{1}H)$ -values are tentatively assigned to the 2-pyridine group in the typical 24 order $a(H^5) > a(H^3) > a(H^4) > a(H^6)$. This ordering is not only supported by a Hückel MO calculation but also by comparison with the related symmetrical species bpy⁻⁻ and Bu'-dab⁻⁻ (Table 2).^{24,25} The ${}^{14}N$ coupling constants could not be determined accurately from the EPR spectrum; using the spectral width and the ¹H-ENDOR information, we arrived at the reasonable estimates listed in Table 2.

Summarizing, the R-pyca anion radical exhibits a spin distribution which resembles that of both bpy⁻ and R-dab⁻. Although pyca is thus a true 'hybrid' system, the better π -acceptor capability of the imine function in comparison with that of 2-pyridyl² causes a higher spin population at the non-

Table 2	EPR/ENDOR data ^a	of α -diimine anion radicals
---------	-----------------------------	-------------------------------------

	K ⁺ /(bpy ^{•-}) ^b	K ⁺ /(Bu ^t -py	ca ^{•-})		
		Exp. ^c	Calc. ^d	$K^+/(Bu'dab^{-})^e$	
 a		· · · · · · · · · · · · · · · · · · ·			
$\overline{\mathbf{N}^1}$	0.261	0.29	0.313		
H ³	0.122	0.224	0.165		
H⁴	0.106	0.068	0.085		
H⁵	0.470	0.369	0.286		
H ⁶	0.057	0.046	0.003		
H ⁷ (imine)		0.488	0.575	0.43	
N ⁸ (imine)		0.55	0.649	0.56	
H ⁹ (Bu ^t)		0.013		0.015	
g	2.0030	2.0032		2.0035 <i>°</i>	

^a Coupling constants a in mT; for numbering see structural formulae. ^b In THF solution, from ref. 22. ^c In THF solution, ¹H-values from ENDOR spectroscopy at 200 K, ¹⁴N-values from EPR spectrum at 293 K. ⁴ From Hückel MO calculations ($h_N = 0.5$, all k = 1) and application of the McConnell equation $a = Q \times \rho = Q \times c^2$, Q = 2.3 mT (ref. 19). ^e In THF solution, from ref. 23.

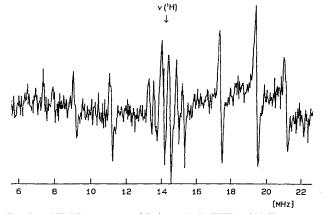


Fig. 5 ENDOR spectrum of Bu⁴-pyca⁻⁻ in THF at 200 K, generated by reduction with potassium

aromatic arm of this unsymmetrical α -diimine. In bpip, on the other hand, the stronger π -acceptor character of pyrazine leads to an even distribution of spin between the imine and heterocyclic nitrogen centres, rendering this molecule a promising bifunctional ligand system for co-ordination chemistry.⁸⁻¹³

Experimental

EPR and ENDOR spectra were recorded in the X band on a Bruker System ESP 300 equipped with an ENI A500 RF amplifier, a Bruker ER033 field-frequency lock, a Bruker ER035M gaussmeter and a HP 5350B microwave counter. IR spectra were obtained using Perkin-Elmer 684 and 283 instruments; NMR spectra were recorded with a Bruker AC250 spectrometer. Cyclic voltammetry was carried out using a threeelectrode configuration (glassy carbon electrode, Pt counter electrode Ag/AgCl reference) and a PAR 273 potentiostat and function generator.

Bu^t-pyca ³⁻⁶ was obtained following standard literature procedures. All reactions involving the generation of radicals were carried out in dried solvents under argon or high vacuum.

2,5-Bis(1-phenyliminoethyl)pyrazine (bpip)

A mixture containing 2,5-diacetylpyridine (264 mg, 1.61 mmol),^{18,26} freshly distilled aniline (310 mg, 3.33 mmol), molecular sieve 4 Å (3 g) and acidic alumina (Woelm A-super-I, 20 mg) were heated in hexane (70 cm³) under reflux for 24 h. The hot solution was filtered, condensed to 30 cm³, and the pale-yellow crystals were collected. Washing with hexane, recrystallization from diethyl ether, and drying under vacuum

yielded a pale-yellow product (201 mg, 40%), mp 165 °C (Found: C, 76.0; H, 5.8; N, 17.6. Calc. for $C_{20}H_{18}N_4$: C, 76.41; H, 5.77; N, 17.82%); $\nu_{max}/cm^{-1}(KBr)$ 1640 (C=N); $\delta_{H}(250 \text{ MHz}; [^{2}H_{6}]$ acetone 2.36 (6 H, s, Me), 6.19 (4 H, dd, J 1.1 and 8.4, o-H), 7.15 (2 H, t, J 1.1, 7.5, p-H), 7.42 (4 H, m, m-H) and 9.43 (2 H, s, pyrazine CH).

Acknowledgements

This work was supported by the DFG, VW-Stiftung and Fonds der Chemischen Industrie.

References

- 1 W. R. McWhinnie and J. D. Miller, Adv. Inorg. Chem. Radiochem., 1969, 12, 135.
- 2 H. tom Dieck, K. D. Franz and F. Hohmann, *Chem. Ber.*, 1975, **108**, 163; R. W. Balk, D. J. Stufkens and A. Oskam, *Inorg. Chim. Acta*, 1978, **28**, 133.
- 3 G. van Koten and K. Vrieze, *Rec. Trav. Chim. Pays-Bas*, 1981, 100, 129; *Adv. Organomet. Chem.*, 1982, 21, 152; K. Vrieze and G. van Koten, *Inorg. Chim. Acta*, 1985, 100, 79.
- 4 G. van Koten, J. T. B. H. Jastrzebski and K. Vrieze, J. Organomet. Chem., 1983, 250, 49.
- 5 H. Brunner and W. A. Herrmann, Chem. Ber., 1972, 105, 770; J. Organomet. Chem., 1973, 57, 183.
- 6 D. J. Stufkens, Coord. Chem. Rev., 1990, 104, 39; M. Maruyama, H. Matsuzawa and Y. Kaizu, Inorg. Chem., 1995, 34, 3232.
- 7 D. P. Drolet, L. Chan and A. J. Lees, Organometallics, 1988, 7, 2502.
- 8 W. Kaim, S. Ernst and V. Kasack, J. Am. Chem. Soc., 1990, 112, 173.
- 9 V. Kasack, S. Hasenzahl, R. Reinhardt and W. Kaim, unpublished results.
- 10 W. Kaim and S. Kohlmann, Inorg. Chem., 1987, 26, 68; 1986, 25, 3442.
- 11 W. Kaim and J. Fees, Z. Naturforsch., Teil B, 1995, 50, 123.
- 12 E. Constable, Chem. Ind. (London), 1994, 56.
- 13 S. Campagna, A. Giannetto, S. Serroni, G. Denti, S. Trusso, F. Mallamace and N. Micali, J. Am. Chem. Soc., 1995, 117, 1754.
- 14 M. B. Lawson and E. B. Fleischer, J. Coord. Chem., 1972, 2, 79.
- 15 H. Haga and K. Koizumi, *Inorg. Chim. Acta*, 1985, 104, 47; S. C. F. Maloney, M. R. McDevitt and F. L. Urbach, *Inorg. Chim. Acta*, 1989, 164, 123.
- 16 W. Kaim, J. Am. Chem. Soc., 1982, 104, 3833 and 7385; Top. Curr. Chem., 1994, 169, 231.
- 17 M. Kaupp, H. Stoll, H. Preuss, W. Kaim, T. Stahl, G. van Koten, E. Wissing, W. J. J. Smeets and A. L. Spek, *J. Am. Chem. Soc.*, 1991, 113, 5606; S. Hasenzahl, W. Kaim and T. Stahl, *Inorg. Chim. Acta*, 1994, **225**, 23.
- 18 T. Caronna, G. Fronza, F. Minisci and O. Porta, J. Chem. Soc., Perkin Trans. 2, 1972, 2035.
- 19 F. Gerson, High Resolution ESR Spectroscopy, Wiley, London, 1970.
- 20 C. S. Johnson and R. Chang, J. Chem. Phys., 1965, 43, 3183.

- 21 W. Lubitz and T. Nyrönen, J. Magn. Reson., 1980, 41, 17; W. Kaim and W. Lubitz, Angew. Chem., 1983, 95, 915; Angew. Chem., Int. Ed. Engl., 1983, 22, 892; Angew. Chem. Suppl., 1983, 1209.
- 22 K. Scheffler and H. B. Stegmann, *Elektronenspinresonanz*, Springer, Berlin, 1970.
- 23 A. D. Pajerski, M. Parvez and H. G. Richey, Jr., J. Am. Chem. Soc., 1988, 110, 2660.
- 24 W. Kaim, Chem. Ber., 1981, 114, 3789.
- 25 P. Clopath and A. von Zelewsky, Helv. Chim. Acta, 1972, 55, 52.
- 26 C. Bessenbacher, S. Ernst, S. Kohlmann, W. Kaim, V. Kasack, E. Roth and J. Jordanov, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 4075.

Paper 5/02073E Received 31st March 1995 Accepted 7th July 1995