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the related anion radical of N-tevt-butylpyridine-2-carbaldimine 
(Bu'-pyca) 
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~~ 

EPR and ENDOR spectra were obtained for the anion radical forms of Bu'-pyca (N-tert-butylpyridine-2- 
carbaldimine) and of the new symmetrical bis-chelate ligand bpip [2,5-bis( 1 -phenyliminoethyl)pyrazine] . 
The spin distribution of both species reflects the mixed imine/azine composition of the 'a-diimine' chelate 
moieties. In the absence of coordinating electrophiles, bpip' - displays ENDOR-detectable conformational 
equilibria, presumably between s-cis/s-cis, s-cisls-trans and s-transls-trans isomers. Bpip reacts with MgR,, 
R = 2-tolyl, in an electron-transfer fashion to form an organomagnesium radical complex. 

Introduction 
Among the most prominent members of the a-diimine ligand 
family for chelate coordination of metal centres are aromatic 
2,2-bipyridine (bpy) ' *2 and non-aromatic 1,4-diorganosubsti- 
tuted 1,4-diazabutadienes (R-dab). 2-4 As mixed aromatic/non- 
aromatic 'hybrid' forms, various pyridine-2-carbaldimines (R- 
pyca) have also been used for some time in stereochemical, 
photochemical or other s t ~ d i e s . ~ - ~  Owing to their low 
symmetry, there have not yet been any satisfactory EPR 
investigations of R-pyca anion radicals although the ligands 
and their complexes have low lying 7c* orbitals. 3,4,6 

In this work we describe electron paramagnetic 
resonance/electron-nuclear double resonance (EPR/ENDOR) 
studies and the electron-transfer reactivity of a new 'doubled' 
pyca-type ligand, 2,5-bis( 1 -phenyliminoethyl)pyrazine (bpip),8 
which is able to bind two equivalent metal centres in a mixed 
azine/imine chelate fashion. 8,9 There is a continuing interest in 
new symmetrically bridging ligands 'O*" in the field of metal- 
metal interactions and 'metallosupramolecular' chemistry; ' 2* ' 
bis(pyridine-2-carbaldimine) ligands related to bpip are 
known. 14*' In comparison with these previously synthesized 
ligands, 14,' bpip contains a smaller 7c-system, which increases 
the extent of potential metal-metal interaction in dinuclear 
complexes." We also report an EPR spectrum of bpip*- in a 
metal-coordinated form after the electron-transfer reaction "J 

of bpip with Mg(2-tolyl),, and a first EPR/ENDOR study of 
a pyridine-2-carbaldimine anion radical, i. e. of the tert-butyl 
derivative Bu'-pyca' - 

H4 H3 

mN 
bpip But-pyca 

Results and discussion 
2,5-Bis( 1-phenyliminoethy1)pyazine anion radical 
Bpip, prepared from the reaction of 2,5-diacetylpyrazine '* and 
aniline, can be reduced to an anion radical at - 1.42 V us. 

standard calomel electrode (SCE) in acetonitrile or tetrahydro- 
furan (THF)/O.l mol dm-3 Bu4NC104. The green solution 
displays an EPR spectrum (Fig. 1) which can be simulated 
assuming a small pyrazine proton coupling a(NCH), a larger 
methyl proton hyperfine splitting, and 4N hyperfine coupling 
from both the pyrazine and imine nitrogen centres; within the 
EPR linewidth, both a(14N)-values are equivalent (Table 1). 
This assignment is supported by the results from a Hiickel MO 
calculation of E spin pop~lat ions '~ which are depicted in Fig. 2 
(perturbation parameterIg h, = 0.8 for all four nitrogen 
centres, methyl and N-phenyl substituents not included). 

Fig. 1 shows, however, that the experimental spectrum is not 
perfectly reproduced by the computer simulation. While the 
typical ' 9*20 anisotropic EPR line-broadening of large radical 
ions with 14N hyperfine splitting precluded a more detailed 
investigation at lower temperatures, the low radical concentr- 
ations necessary for high-resolution studies led to low signal-to- 
noise ratios (Fig. 1). For further analysis, we therefore resorted 
to 'H-ENDOR spectroscopy which produced distinctly 
temperature-dependent spectra (Fig. 3, Table 1). Although 14N- 
ENDOR signals of pyrazine radical ions with a,-values of - 0.8 
mT are usually well detectable, particularly at temperatures 
around 275 K,21 the much smaller 14N hyperfine coupling of - 0.16 mT for bpip anion radical results in poorly defined 
features in the low-frequency region ( c 3 MHz) where possible 
artifact signals and baseline problems did not allow us to assign 
signals with the necessary confidence. 

At 243 K and below, there are two pairs of 'H-ENDOR 
signals visible for the two kinds of protons mentioned above; 
the hyperfine coupling constants are consistent with the 
assignment made in Table 1. No phenyl proton coupling is 
observed, which suggests a close-to-perpendicular arrangement 
between the phenyl rings and the heterocyclic imine functions; 
on the other hand, the large 14N and CH3 coupling constants 
are in agreement with a close-to-planar n-system involving the 
10 n: centres depicted in Fig. 2. 

Additional lines appear at higher temperatures (Fig. 3), 
which are attributed to an interconversion of s-cisls-cis, s-cisls- 
trans and s-truns/s-trans rotamers I, I1 and I11 (Scheme 1) and 
which are a consequence of the partially restricted rotation 
around the pyrazine/imine bonds. 

In fact, at least three different pairs of small (pyrazine CH) 
and large 'H coupling constants (methyl) can be identified 
(Fig. 3, Table 1); hence the unsatisfactory computer 
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Table 1 EPR/ENDOR dafa" of bpip'- and its bis(2-tolylmagnesium) complex 

Radical 

bpip'- (EPR, 293 K) 0.186' 
bpip'- (ENDOR, 243 K) 0.193 

(ENDOR, 273 K) * 0.193' 
0.233 " 

(ENDOR, 283 K)b 0.198" 
0.184' 
0.233 
0.141 ' 
0.12 @Pip' - )(RMg + 12 

0.018' 0.1 59'qd 2.0033 
0.020 n.d. 
0.020' n.d. 
0.069 
0.049 
0.020 " n.d. 

0.069 " 
0.049 ' 

< 0.08 0.24d 2.0035 

" Measurements in THF solution, no phenyl proton hyperfine coupling observed. From electrolysis in THF/O.l mol dm-j Bu,NCIO,. ' Main 
component. Equivalent hyperfine splitting of pyrazine and imine nitrogen centres. " Minor component, for assignments see text. f From electron- 
transfer reaction between bpip and R,Mg (R = 2-tolyl) in THF. 

c 

0.5 m T  I I' I 
Fig. 1 EPR spectrum (top) of bpip'-, generated by electrolysis at a Pt 
cathode in THF/O. 1 mol dm-3 Bu,NClO, at 293 K, and simulation with 
the coupling constants of Table 1 (0.065 mT linewidth) 

P 
Fig. 2 Hiickel MO representation of the singly occupied x MO of bpip 
anion radical (AN = 0.8 for all nitrogen centres; methyl and phenyl 
substituents not included) 

simulation of the EPR spectrum which accounts only for the 
main species. 

9 10 11 12 13 14 15 16 17 18 19 20 21 
IHHZ 1 

Fig. 3 ENDOR spectrum of electrolytically generated bpip' - at 243 K 
(top), 273 K (middle) and 283 K (lower spectrum). 20 mW microwave 
power, 31 6 W rf power, 12.5 kHz modulation frequency. 

On reduction, the single bonds between the aromatic 
heterocycle and the imine double bonds acquire some partial 
double-bond character with increased barrier to rotation. 9 7 2 2  

At low temperatures, there is only one rotamer observable by 
ENDOR spectroscopy (0.193 and 0.020 mT hyperfine splitting) 
which we tentatively identify as species I because of the least 
interference between (pyrazine-C)H and (imino)CH, groups 
(Scheme 1). At temperatures above 243 K, the fraction of high- 
energy rotamers I1 and eventually I11 should increase, the exact 
assignment of hyperfine coupling being somewhat uncertain 
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Scheme I 
x-systems 

Rotamers of bpip anion radical with coplanar 10-centre 

due to the low symmetry of the presumed intermediate rotamer 
11. Tentatively, we assign the 'H coupling constants of 0.233, 
%0.193,0.069 and 0.020 mT to rotamer I1 and values of 0.141 
and 0.049 mT to rotamer 111. The larger (pyrazine-C)H 
coupling constants in comparison with that of conformer I can 
be attributed to interference with the methyl group as illustrated 
in Scheme 1. 

In order to provide additional evidence for this assignment 
we obtained a dinuclear bis(che1ate) complex of bpip'- which 
then has to exist in the sterically less favourable conformation 
111. The driving force for this high-energy arrangement is 
provided by formation of the coordinative bonds. The 
bis(che1ate) complex chosen was obtained via a single-electron- 
transfer reaction with bis(2-toly1)magnesium. It is well known 
that 7c-electron-accepting a-diimine ligands such as bpy, 1,lO- 
phenanthroline l 6  or R-dab 16,17  react with diorgano-magne- 
sium or -zinc compounds to form radical complexes under loss 
of one alkyl radical (chelate-assisted inner-sphere electron 
transfer) [eqn. ( l ) ] . ' 6 9 ' 7  For the dinuclear bpip system we 

bpip + 3R2Mg- 
(bpip'-)(+MgR), + R,Mg- + R' (1) 

assume two-fold organomagnesium coordination with only one 
electron-transfer step; triorganomagnesiate anions are known 
species. 

Unfortunately, the bis(organ0magnesium) complex could 
not be studied by ENDOR due to difficulties in saturating EPR 
signals; the less well resolved EPR spectrum (Fig. 4) may be 
simulated by assuming the typically 1 6 7 1 7 9 2 4  increased 14N 
hyperfine splitting and a methyl proton coupling of 0.12 mT 
(Table 1) which would support our assignments for the 
conformer III. 

Fig. 4 EPR spectrum (top) of the paramagnetic reaction product of 
bpip with Mg(2-tolyl), in 1,2-dichloroethane at 293 K; lower spectrum: 
computer simulation with the data from Table 1 and 0.098 mT 
linewidth 

N-tert-Butylpyridine-2-carbaldimine anion radical 
Although Bur-pyca, like Bur-dab,' is reduced only irreversibly 
at - - 1.9 V us. Fc+l0 in cyclic voltammetry (MeCN/O.l mol 
dmP3 Bu,NClO,; 295 K), it could be converted into a relatively 
persistent anion radical with potassium in THF at 200 K. The 
achievable concentration at high-resolution conditions was 
fairly low; nevertheless, we could obtain EPR and ENDOR 
spectra. Although we have no direct evidence from EPR or 
ENDOR spectroscopy, we assume the formation of an ion pair 
between K +  and Bu'-pyca'- in its chelating conf~rmation;~ 
without such co-ordination the pyca systems probably prefer the 
trans conformation with respect to the imine moieties. 

Owing to the large number of coupling parameters (2 x I4N, 
6 x 'H coupling constants, Table 2), we had to resort to 
ENDOR spectroscopy in order to obtain at least the a('H)- 
values. Fig. 5 shows that there are indeed six such signal pairs, 
of which we attribute the smallest value to the fert-butyl 
protons and the largest 'H coupling to the proton at the imine 
group. The remaining four a('H)-values are tentatively 
assigned to the 2-pyridine group in the typical2, order 
a(H5) > a(H3) > a(H4) > a(H6). This ordering is not only 
supported by a Huckel MO calculation but also by comparison 
with the related symmetrical species bpy' - and Bur-dab'- 
(Table 2).24,25 The 14N coupling constants could not be 
determined accurately from the EPR spectrum; using the 
spectral width and the 'H-ENDOR information, we arrived at 
the reasonable estimates listed in Table 2. 

Summarizing, the R-pyca anion radical exhibits a spin 
distribution which resembles that of both bpy'- and R-dab'-. 
Although pyca is thus a true 'hybrid' system, the better 7c- 
acceptor capability of the imine function in comparison with 
that of 2-pyridy12 causes a higher spin population at the non- 
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Table 2 EPR/ENDOR data' of a-diimine anion radicals 

~~~ 

K + /(bPY' -1 Exp.' Calc.d K+/(Bu'dab'-) 

a 

N' 0.261 
H3 0.122 
H4 0.106 
H5 0.470 
H6 0.057 
H7 (imine) 
N8 (imine) 
H9 (But) 

g 2.0030 

0.29 
0.224 
0.068 
0.369 
0.046 
0.488 
0.55 
0.013 

2.0032 

0.313 
0.165 
0.085 
0.286 
0.003 
0.575 0.43 
0.649 0.56 

0.015 

2.0035 

' Coupling constants a in mT; for numbering see structural formulae. In THF solution, from ref. 22. ' In THF solution, 'H-values from ENDOR 
spectroscopy at 200 K, 14N-values from EPR spectrum at 293 K. From Hiickel MO calculations (h, = 0.5, all k = 1) and application of the 
McConnell equation a = Q x p = Q x c', Q = 2.3 mT (ref. 19). ' In THF solution, from ref. 23. 

yielded a pale-yellow product (201 mg, 40%), mp 165 "C 
(Found: C, 76.0; H, 5.8; N, 17.6. Calc. for C2*HI8N4: C, 76.41; 
H, 5.77; N, 17.82%); v,,,/cm-'(KBr) 1640 (C=N); 6,(250 MHz; 
C2H,]acetone 2.36 (6 H, s, Me), 6.19 (4 H, dd, J 1.1 and 8.4, 
o-H), 7.15 (2 H, t, J 1.1,7.5,p-H), 7.42 (4 H, m, rn-H) and 9.43 
(2 H, s, pyrazine CH). 
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Fig. 5 ENDOR spectrum of Bu'-pyca'- in THF at 200 K, generated 
by reduction with potassium 

aromatic arm of this unsymmetrical a-diimine. In bpip, on the 
other hand, the stronger n-acceptor character of pyrazine leads 
to an even distribution of spin between the imine and 
heterocyclic nitrogen centres, rendering this molecule a 
promising bifunctional ligand system for co-ordination 
~hemis t ry .~~ '  

Experimental 
EPR and ENDOR spectra were recorded in the X band on a 
Bruker System ESP 300 equipped with an EN1 A500 R F  
amplifier, a Bruker ER033 field-frequency lock, a Bruker 
ER035M gaussmeter and a HP 5350B microwave counter. IR 
spectra were obtained using Perkin-Elmer 684 and 283 
instruments; NMR spectra were recorded with a Bruker AC250 
spectrometer. Cyclic voltammetry was carried out using a three- 
electrode configuration (glassy carbon electrode, Pt counter 
electrode Ag/AgCl reference) and a PAR 273 potentiostat and 
function generator. 

Bu'-pyca 3-6 was obtained following standard literature 
procedures. All reactions involving the generation of radicals 
were carried out in dried solvents under argon or high vacuum. 

2,5-Bis( 1-phenyliminoethy1)pyrazine (bpip) 
A mixture containing 2,5-diacetylpyridine (264 mg, 1.61 
mmo1),18926 freshly distilled aniline (310 mg, 3.33 mmol), 
molecular sieve 4 A (3 g) and acidic alumina (Woelm A-super-I, 
20 mg) were heated in hexane (70 cm3) under reflux for 24 h. 
The hot solution was filtered, condensed to 30 cm3, and the 
pale-yellow crystals were collected. Washing with hexane, 
recrystallization from diethyl ether, and drying under vacuum 
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